Forecasting the new economy paper delivered at the Russian academy of sciences: Moscow 9th December 2010

Professor Robin Matthews

http/www.robindcmatthews.com http://www.tcib.org.uk/about.html http://kpp-russia.ru

Summary: New dynamics

- inter dependence in the world
 - the inertia of habitual ways of thinking
- Models of the world become the reality
- The metaphor of networks
 - Their default state: small worlds
- Relationships
 - scale free → fractal → fat tailed distribution → risk
- Policy

INTERDEPENDENCE

Economy and politics

- State of the world economy
 - TBTF TBTBO
 - Systemic risk
- Paradoxes policy
 - Excess supply
 - Currency wars
- Ecology
- Emerging nations and establishment nations

 $\mathbf{y} = \mathbf{c}\mathbf{x}^{-\mathbf{a}}$

Change on all scales is possible

The map is not the territory

The model is not the reality

Grammar

Ceci n'est pas une pipe.

Rene Magritte

Source perversebeauty.blogspot.com

Risk

• Diversification reduces risk

• BUT

• Feedbacks increase systemic risk

Diversification reduces risk

According to

$\sigma_p^2 = \sum \sum w_i w_j \sigma_{ij} \rho_{ij}$

Feedbacks increase systemic risk

According to

 $h[\rho(t),\rho(t')] \leq 0$

t' > t

Metaphor for interdependence

Networks

- Default state: small world
 - Highly clustered
 - Short path lengths

Networks: default state Small world: highly clustered, short path lengths

- Degree of a node is the number of edges (*k*) connecting it to other nodes.
- High degree nodes have many connections (high *k*); low degree nodes have few (low *k*)
- *P(k)* probability of degree
 k follows a power law
- $P(k) \approx k^{-\alpha}$..

The internet k = degree of a node; the number of connected edges

Networks: default state Small world: highly clustered, short path lengths

- Robust
- fragile

Chart 3: Global Financial Network: 2005

CORRESPONDENCES

scale free \rightarrow fractal \rightarrow fat tailed distribution \rightarrow risk \rightarrow contagion \rightarrow scale free \rightarrow fractal \rightarrow

Fractal images

SOURCE http://www.google.com/images/sdsc.edu

Paradox

Paradoxes for policy

Paradox of interdependence

(a few examples)

• State of the world economy

- TBTF TBTBO
- Systemic risk: means that risk is a public good
- Small worlds: fragility of the Eurozone
- Paradox: policy
 - Currency wars: both surplus and deficit economies need to devalue
 - Excess supply: but deficits cut demand
 - Inflation plus wage restraints/cuts mean deflation
 - Competition and administered prices
- Paradox: ecology
 - Impacts on global warming are fat tailed
 - Excess supply yet food prices rise
 - Impossibility/possibility of exponential growth
- Paradox : emerging nations and establishment nations
 - Need to balance economies as well as get gains from trade
 - Feedbacks/blowbacks from global trade
 - Long term reversals in the balance of economic power

Selected references

- Battiston, S, Gatti, D. D, Gallegati, M, Greenwald, B.C.N. and Stiglitz, J.E.(2009), 'Liasons Dangereuses: Increasing Connectivity, Risk Sharing, and Systemic Risk'. *Working Paper*.
- Haldane Andrew G (April 2009), 'Rethinking the financial network,' Speech delivered at the Financial Student Association, Amsterdam
- Matthews, Robin (2009) "The Financial Tower of Babel", *Economic Strategies*, May.
- Milgram, S (1967), 'Small-world problem', *Psychology Today 1(1):* 61-67.
- **Taleb, Nassim** (2007), '*The Black Swan: The Impact of the Highly Improbable*', New York: Random House and London: Penguin.
- Watts, D.J and Strogatz, S.H (1998), 'Collective dynamics of 'smallworld' networks', *Nature 393 (6684): 409–10*.